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The location, by the method of Delves and Lyness, of the roots of the equationf(z) = 0 for 
analytic f is examined. New formulas are proposed for calculating the integrals involved in the 
application of the method. These formulas do not require the evaluation off’(z) and are more 
accurate than some existing ones. A highly reliable, but not completely foolproof, procedure 
for computing the number of zeros offin a given region is also proposed. 

1. INTRODUCTION 

In the fields of physics and applied mathematics one, very often, encounters the 
problem of determining all the roots of an equation of the form f(z) = 0 in some 
region of the z plane; examples of this are the study of the characteristic modes of 
waveguides and the calculation of characteristic frequencies of resonating systems. 

The most commonly used routines for finding the roots of the equationf(z) = 0 (f 
analytic) do not ensure that all the zeros off in the region of interest are obtained, 
except when fis a polynomial. To the authors’ knowledge two methods, Gardiol’s ( 11 
and Delves and Lyness 121, have been proposed for the solution of this problem; the 
method of Lehmer [ 31 for solving polynomial equations can also be used for 
equations involving other analytic functions but we feel that the computation time 
needed will, in the latter case, be prohibitive. Recently a graphical technique 141 has 
also been suggested for the same purpose but it cannot compete in accuracy with any 
of the above mentioned methods. 

Gardiol’s method is based on the use of sequences derived from Newton’s method 
starting from appropriate values on the boundary of the region. It is easy to use but 
has the serious drawback of not ensuring that all the zeros offare found. The method 
proposed by Delves and Lyness is based on an entirely different principle which 
consists in determining a polynomial having the same zeros as f in the given region, 
the coefficients of the polynomial being calculated from the integrals of z”f ‘(z)/f (z) 
along the boundary of the region for a number of values of k equal to the number of 
zeros off. Providing that the number of zeros off is correctly calculated the method 
is reliable and is equally applicable to simple and multiple zeros. This method has 
been applied to the solution of physical problems such as the calculation of eigen- 
values corresponding to the modes supported by inhomogeneous waveguides IS,61 
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and the study of plasma instabilities 171, but it does not seem to be as widely used as 
it would be expected bearing in mind its advantages. 

In the present paper we give new formulas for calculating the above mentioned 
integrals. We also propose a test which significantly reduces the possibility for an 
error to occur in the calculation of the number of zeros of f, a question of 
fundamental importance in the application of the method. The formulas given do not 
require the calculation of the derivative off which is often impracticable or may 
involve an amount of computation substantially higher than that off: The application 
of these formulas is restricted to circular integration paths but this is not thought to 
be a serious limitation. 

2. THE ASSOCIATED POLYNOMIAL 

Let f be a function with n zeros zj (j = 1, 2,..., n) in a bounded simply-connected 
region X of the complex plane and analytic in X + r, where r is the boundary of X 
(some of zj may be equal). Let 

P(z) = t flkZk 
k=O 

(a, = 1) 

be the polynomial of degree n whose zeros are equal to and have the same 
multiplicity as the zeros off in X. Henceforth this polynomial will be referred to as 
the associated polynomial for the region X. Multiplying (1) by z-“P’(z)/P(z) and 
integrating along a path r, enclosing the origin and all the zeros of P(z), the 
following set of equations is obtained: 

ma,,,= i akSk-,,, (m = 0, l,..., n - 1), (2) 
k=m 

where 

Sk=+.4 - “(‘) Zk dz 

r, P(Z) * 
(3) 

Formulas (2) which constitute the basis of the method of Delves and Lyness are 
known in the literature as Newton’s formulas and can be derived in other ways 18 1. 
For negative m the above procedure leads to 

” 
o= 1 akSk-m 

k=O 

which we shall not use in the following. 
In the integrals (3) the integration path encloses all poles of z”P’(z)/P(z) and thus 
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we can put ri = I’. The set of equations (2) can now be written in terms of the 
integrals 

I- l -f’ozkdz 
k 27ri r f(z) f 

by noting that the function w defined by 

v(z) =f’W P’(z) --- 
f(z) P(z) 

is analytic in X + f, which implies that Sk = I, for all integers k > 0. 
Hence the coefficients uk of the associated polynomial in X are given by the 

following recurrence relations: 

-a n-l = a,Z, 

-2a,-, = %Z2 + a,- 11, 
(5) 

- ~ql=a”l,+a,~,l”~, + .*a +a,l,. 

Through the formulas (5) the calculation of the zeros off in X is reduced to the 
standard and easier problem of determining the zeros of a polynomial. However, if 
the number of zeros offin X is too high it may be necessary to divide the region X in 
subregions in order to avoid the calculation of integrals Zk for large values of k as this 
would require increasing the number of points to attain a certain accuracy in the 
calculation. Delves and Lyness suggest that the number of zeros of f in each 
subregion should not exceed 8. If the number of zeros is not allowed to be greater 
than 4, the zeros of the associated polynomial may be obtained by known algebraic 
formulas. To satisfy a condition of this type the computer program may include a 
systematic search routine which computes the number of zeros off for a family of 
contours bounding successively larger regions, ending up with a set of subregions of 
X satisfying the conditions: (i) X,,,, i 1 X,,,; (ii) number of zeros off in X,,,, I - X, 
less than some specified value. 

3. NUMERICAL EVALUATION OF THE INTEGRALS 

To determine the zeros offin each domain X, + , - X,,, the integrals I, given by (4) 
may be computed from the difference of integrals of the form 
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calculated along the boundaries of X,, , and X,,, . Henceforth the regions X,,, are 
chosen to be circles centred at the origin. Denoting by pm the radius of X,,, we have 

where 4(e) =f@,,,eie) and C, is the Fourier coefficient of order k of the function 
-i#‘(O)/#(O), i.e., 

(8) 

Formulas (6) and (7) show that the Fourier coefficient C, represents the number of 
zeros offin X,. For any C, the application of the trapezoidal rule with N + 1 points 
yields the formula 

where 0, = (27r/N) 1. The approximation error is 

&iN’ = cp’ - c, = 1’ cktqN, 
9 

(10) 

where the symbol ’ indicates that the term q = 0 is excluded from the summation. 
However, the fact that the primitive of #‘(0)/4(e) is known permits the derivation 

of a formula for C, that does not require knowledge of the derivative off which is 
often impraticable to calculate. To this end we integrate (8) along the interval 
[0 - 2x/N, 81 obtaining 

In [4(e)/@ (0 - $)I = C’ + (eirznlN - 1) eeire + 27S,/N. 
, 

The function in the LHS of (11) is the branch of ln[f(z)/‘(ze-i2”‘N)] that is 
analytic in, an annular region containing the circumference r,,, and whose imaginary 
part tends to zero when N + 00. The analyticity of the logarithm on the contour I’,,, is 
due to the zeros of f(z) and f(ze-i2n’N) in the region X,,, being in one to one 
correspondence. 

From (11) it follows that 

co = $ . $ jIn de) de, 
0 

2n 

c,= 
k 1 

exp(ik(2n/iV)) - 1 ’ % i 
g(e) eike de (k f 01, o 
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where 

The evaluation of these integrals by the trapezoidal rule yields the expressions 

co=& 2 g(4)=& $ ImldWL 
l-1 I-1 

p = k/N t eikel g(8,) 
exp(ik(2n/N)) - 1 ,= I 

(k # 0). 

Note that formula (12) is exact. However, as is shown in Section 4, some 
difficulties arise in the computation of C, since knowledge of g(8) at the points 8, 
(I = 1,2,..., N) may be insufficient to ensure that the computed values of In [g(e)] 
belong to the same branch of this function. 

The approximation error of (13) is easily obtained by putting 8 = 8, in (1 l), 
multiplying both sides by exp(ikt3,) and summing over I. Denoting this error by SiN) 
we have: 

(14) 

Comparison of (10) and (14) shows clearly that, providing k 6 N, ( SiN) 1 is less 
than 1 aiN)\, i.e., expression (13) is more accurate than (9). This is illustrated in Table 
I where the computed values of CiN) and c’iN’ are given for the function 
f(r) = sin(7rz - 7r/4). 

TABLE I 

Computed Values of CiN) and ci”” for f(z) = sin(nz - x/4) 

Pm Ll N/2' p 
I C$ p 

10 

0.8 2 32 
64 

2128 

1.0 2 16 
32 

>64 

10.0 20 64 
128 
256 

a512 

-0.640317 
-0.625242 
-0.625000 

-0.501066 
-0.500001 
-0.500000 

-0.584950 
-0.503342 
XI.500006 
-0.5OOOOO 

-0.625234 
-0.625002 
-0.625000 

-0.499970 
-0.500000 
-0.5OOOOO 

-0.499953 
-0.499999 
-0.5OOOOO 
-0.5OOOw 

0.533038 
0.524605 
0.524469 

0.04893 11 
0.0563086 
0.0563145 

1.77223 
1.79634 
1.79746 
1.79746 

0.525619 
0.524479 
0.524469 

0.0596729 
0.0563156 
0.0563145 

1.80442 
1.79760 
1.79746 
1.79746 

‘Sincef(z*) =f*(z) the integration can be reduced to the interval [0, nj. N/2 is the corresponding 
number of points. 
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At this point it is appropriate to point out that a formula of the type (13) i.e., not 
requiring the calculation off’, is given by Delves and Lyness 121. However, (13) is 
formally simpler and should be more accurate in most cases. In fact, g is a periodic 
infinitely differentiable function of B which, as is known, leads to the best accuracy 
for the trapezoidal rule. The function considered by Delves and Lyness is only 
required to be continuous. 

To end this section we note that, if a given accuracy is to be imposed on C,, a 
straightforward application to formula (13) of the usual technique of doubling N until 
the specified accuracy is attained, is inconvenient in view of the fact that the coef- 
ficients g(B,) in (13) depend on N, The difficulty is overcome in the following way. 
Let it4 be the number of subintervals used in the computation of the index and Q the 
number of subdivisions of each subinterval at some stage in the computation (Q is a 
power of 2). Denoting by E i’v’ the summation in (13), we have 

Ejiv’ = ,$, e’ 1k(2n’N)’ ln[$(2nl/N)/$(2n(f - 1)/N)] 

= sff,Q' _ eikWN(s;M.Q’ _ Elf”‘), 

where 
M-l 

s’M,Q’ = C e ik(2nlM)m 
k 

5 eikWN)q 

m=O q=1 

Xln [/ ($-~+$Rz)/#($wz)]. 

In the expression of Sk (“*Q) the inner summation can be performed following the usual 
trapezoidal rule algorithm. The calculation process starts with N = ikf, i.e., Q = 1 for 
which Si”*” = ELM). 

4. COMPUTATION OF THE INDEX OFT 

Let us now consider the evaluation on the computer of the number of zeros off in 
a given region X (index off in X). As pointed out in the preceding section, formula 
(12) is exact, providing g(B) is the branch of ln[f(z)/‘ze-‘2”‘N)] that is analytic in 
an annulus containing the contour and vanishes for N = co. However, the range of 
Im[ g(e)] may be larger than j-n, nj in which case the computer may give erroneous 
values for some points 8, as it can only obtain the principal value of 
arg[f(z)/f(ze-iZn’N)]. By increasing the number of points N, the length of the interval 
spanned by Im[ g(e)1 decreases and hence for N greater than some No the computed 
Lo is correct. 

Bearing in mind the principle of the argument it is easy to see that, for 
arg[#(O,)/$(B,- ,)I to lie in the interval j-n, n] for all 1, it is necessary that N > 2L,, 
where equality corresponds to a uniform variation of arg[#(8)/4(8 - 27r/N)1 along the 

S81/4S/2-5 
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contour. However, if a zero is close to the contour we may need N $ 2L, to obtain a 
correct result. 

Of course the above difficulties disappear if the index is computed through the 
formula 

1 f’(z), 
Lo=2Ai rf(z) I 

since the integrand is, in this case, a single-valued expression. However, apart from 
the inconvenience resulting from having to calculate the derivative of f, the 
trapezoidal rule algorithm is slowly convergent if a zero off lies close to the contour 
and errors may occur if the condition for termination of the sequence of computed 
values of Lo is not sufficiently restrictive. 

Algorithms for calculating the index of analytic functions exist which make use of 
the fact that arg[f(z)l varies continuously along the contour (see 19, 101) but none of 
these is safe from errors resulting from the presence of zeros close to the contour. A 
foolproof test to prevent the occurrence of these errors does not seem possible to 
devise. In the following we propose a simple test based on a criterion of proximity of 
the zero to the contour which may only fail in very anomalous cases. 

Let a be the argument of f(z)lf(ze-i2*‘N) corresponding to the above specified 
branch of In [g(0)] and 6, the value obtained on the computer for 19 = 0,. As pointed 
out above, an erroneous value of the index may be obtained if Ial exceeds 7c on any 
evaluation point; however, if the condition 

\a’,( < a0 < ?r (1 = 1, 2,..., N) (15) 

is imposed for some specified a,, an error can only occur if 

Ial > 27?-a, (16) 

at some evaluation point. In fact if 71 < 1 aI1 < 27~ - a0 for some 1 then a, f a’, but this 
value is rejected by the computer since condition (15) is violated. 

For example, if f(z) = z - z, the result is necessarily correct if we choose 
a0 < K - n/N, as can be seen from a simple geometrical reasoning. But if 
f(z) = (z - zx, condition (15) is not sufficient to prevent the occurrence of errors 
whatever the value of a,. 

To ensure that the computed values of a are correct a test must be found such that, 
if certain conditions are satisfied, the inequality 

la(<27r--a0 (17) 

is true everywhere on the contour. In the following we study one such test. 
Consider a circle of radius 1 and assume that the zero (zo) closest to the contour is 

located at a distance p,, from the centre of the circle. It is easily seen that the 
influence of the zero on 1~(0,)/#(t9-,)1 is minimal when the zero is symmetrically 
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FIG. 1. Geometrical relations for assessing the proximity of a zero relative to r. 

disposed with respect to two evaluation points on the contour as shown in Fig. 1. 
From simple geometrical arguments we obtain 

( K 4 1 2 = 1 1 + + Pi pi - - 2P, 2p, cos(3xlN) cos(7qN) ’ 

sin(n/N) 
cos(n/N) - p,, ’ 

Moreover, for a zero of order k located at the point .z = z0 we have 

h-l a% $1-2 2: k/A [ 1 

(18) 

(19) 

where (, = 4(0,). 
To begin with we assume k = 2. By imposing the condition 28 Q 2n - a0 we ensure 

that the error condition (16) is never reached. Since d,/d, is an increasing function of 
/3 for a fixed N, a condition on d2/d, equivalent to 2p < 2n - a, is provided by 
formulas (18) and (19). Thus, through (20), the value of I#,/#,-, 1 gives a test on the 
violation of condition (17). It can be easily verified that stronger restrictions on a’, 
lead to weaker restrictions on I@Jd,- I 1 and, conversely, weaker restrictions on a’, lead 
to stronger restrictions on I(Jti,-, I. A number of numerical experiments have 
convinced us that a good choice is a, = 3x//4 which corresponds to (d2/d,)2 < 6.1 for 
any N > 32. It can be shown that for zeros of order 3 this inequality still ensures that 
(17) is satisfied for a, = 37r/4. From the foregoing considerations we define the 
following test on the computed values of /,/tire, . 

Test. If for all 1 4, is such that 

(9 lwWdr-l>l < 3n/4, 
(ii) l/6.1 < I#r/dr-,l < 6.1 
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the computed value of the index is accepted. If any of the conditions (i) or (ii) is not 
satisfied the index is recalculated with N replaced by 2N. 

It is to be noted that if we considered the zero closest to the contour to lie in the 
exterior region, i.e., p0 > 1 in Fig. 1, we would arrive at approximately the same 
results although this is a slightly more favourable configuration. 

In Tables II and III we illustrate the application of the above test to functions with 
a single or a double zero close to the integration contour. In these tables the results in 
italics correspond either to an erroneous value of the index (column IND) or to 
situations for which at least one of the test conditions is not satisfied (columns a,+, 
and Mf>. Examination of Table III may suggest that the above test is unnecessarily 
restrictive; two remarks are appropriate here: (i) the case P,,/P,. = 0.99 of Table III is 
very uncommon as it corresponds to a double zero extremely close to contour; (ii) for 
N = 256 the values of a, and Mf are near the limits of acceptance by the test. 

Besides the cases considered in Tables II and III we have checked the test in many 
different examples without getting errors in the computation of the index. 

TABLE II 

Simple Zeros: j(2) = sin@2 - n/4) 

PC&i- 0.95 0.99 
~ - - 

N IND aM Mf IND cw Mf 

16 0 0.86 99.0 0 0.82 400.1 
32 8 0.77 10.3 8 0.74 42.5 
64 8 0.39 3.4 8 0.48 12.2 

128 8 0.21 1.9 8 0.44 5.3 

Note. p. = IzO I, where z0 is the zero closest to the contour r tit, = 3.75). pr = radius of contour f 
(varies with p,,/p,); IND = calculated index; aM=(lln).Max,Iarg(~dg,-,)l; ~f=M=dV4r-II~ 
lb,-lN,l t. 

TABLE III 

Double Zeros: f(z) = sinz(nz - n/4) 

PolPr 0.95 0.99 
~ - 

N IND aM Mf IND aM M, 

16 -1 0.90 251.7 -1 0.85 5J71.5 
32 8 0.86 23.9 6 0.96 556.3 
64 8 0.69 5.2 8 0.95 106.3 

128 8 0.48 2.6 8 0.88 25.5 
256 8 0.28 1.6 8 0.76 7.0 
512 8 0.15 1.3 8 0.57 2.8 

Note. Notation as indicated in Table II b0 = 1.75). 
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5. CONCLUSIONS 

In the foregoing sections we have proposed new formulas for evaluating the 
integrals involved in the calculation of the coefficients of the polynomial associated 
with the given analytic function f in some specified region X of the complex plane. 
These formulas, which do not require the knowledge off’(z), were shown to be more 
accurate than those based on a direct evaluation of the integrals of zkf’(z)/f(z) 
(k = 1, 2,..., n) along the boundary of the region. 

As is obvious from an examination of the formulas (5) for the coefftcients of the 
associated polynomial, the only critical point in the application of the method of 
Delves and Lyness is the determination of the number of zeros offin the region X. 
The test proposed in the preceding section for accepting or rejecting the number of 
zeros computed with a certain number of points N has been found to be entirely 
reliable. The test is not foolproof but the nature of the problem of the evaluation of 
the index seems to rule out the possibility of existence of such a test. 

Finally, as an indication to the user, we would like to point out that the method of 
Delves and Lyness works equally well for simple and multiple zeros which is a 
significant advantage over methods based on sequences derived from Newton’s 
method which will fail to converge in the case of multiple zeros (Gardiol’s method 
[ 11 is an example of this). This is, in fact, a particular case of the more general 
situation corresponding to the occurrence of saddle points (‘J’(z) = 0) near the path 
defined by the sequence used, which may result in one or more zeros being missed. 
But if a very high accuracy is required (say, greater than 10e4) it may be necessary 
to use locally a scheme (e.g., Muller’s method [ 111) to reline the values obtained by 
the present method since the calculation of the integrals with the required accuracy 
may be too costly. However, for most physical applications, it is enough to compute 
the integrals with the least number of points for which the calculated value of the 
index is correct. 

APPENDIX: NOMENCLATURE 

ak coefficients of P(z) 
a argument off(z)/f(ze-‘*“IN) 
a0 maximum value accepted for a 
ck Fourier coefficients 
d,, d, distances of the zero z. to two consecutive evaluation points 
f analytic function 
TN@ values off over r or r,,, in polar coordinates 
4, computed values of 4 
g(8) computed function in (12) and (13) 
I- boundary of X 
ml boundary of X,,, 
i imaginary unit 
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I, 
=ll 
N 

Zo, 
Pr 
PO 
Pm 
Sk 
e 

0, 
X 

xl?l 
Z 
ZO 

‘j 
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integrals related to f for the region X 
integrals related to f for the subregion X,,, 
number of numerical evaluations off 
number of zeros of P(z) 
associated polynomial 
radius of the contour I’ 
modulus of z. 
radius of the contour r, 
integrals related to P(z) 
argument of z 
argument of z at the evaluation points 
region of the z plane 
subregion of X 
complex variable 
nearest zero to the contour r 
zeros off 
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